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BIPARTITE LINEAR 𝜒-CONSENSUS OF DOUBLE-INTEGRATOR
MULTI-AGENT SYSTEMS WITH MEASUREMENT NOISE

Cuiqin Ma, Weiwei Zhao, and Yun-Bo Zhao

ABSTRACT

The bipartite consensus problem is investigated for double-integrator multi-agent systems in the presence of mea-
surement noise. A distributed protocol with time-varying consensus gain is proposed. By using tools of state transition
matrix and algebraic graph theory, necessary and sufficient conditions for the designed protocol to be a mean square
bipartite linear 𝜒-consensus protocol are given. It is shown that the signed digraph being structurally balanced and
having a spanning tree are not only sufficient, but also necessary for bipartite consensus. Furthermore, the protocol is
proved to be a mean square bipartite average consensus protocol if the signed graph is weight balanced.
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I. INTRODUCTION

“Consensus” – to reach an agreement through
collaboration– has been a hot topic for years in the dis-
tributed control of multi-agent systems (MASs) [1–4].
Within this general framework, it is realized that some
agents may cooperate while others may compete [5],
and therefore the concept of bipartite consensus is pro-
posed [6]. For this type of consensus, the states of all
agents converge to the same value except for their signs.
Though still at the early stage, various works have been
done in this field. To name a few, in [6], distributed
Laplacian-like protocols are designed for first-order inte-
grator MASs and bipartite consensus can be achieved
if and only if the strongly connected signed digraph is
structurally balanced; sufficient conditions for bipartite
consensus are given for signed digraph with a spanning
tree in [7]; the switching topology case is considered in
[8]; the first-order MASs is investigated in [9], and it is
shown that for general linear MASs, bipartite consensus
over signed digraphs are equivalent to traditional con-
sensus over nonnegative graphs, if the signed digraph is
structurally balanced and has a spanning tree in [10].
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On a parallel line to bipartite consensus, the
effects of measurement noise have been fully consid-
ered for the conventional consensus problem. For exam-
ple, in [11], a time-varying gain is introduced and then
stochastic approximation protocols are designed for the
discrete-time first-order integrator MASs, which is then
extended in [12] to the continuous-time case, and more
relevant works can be seen in [13,14]. Furthermore, in
[15,16], measurement noise is modeled to be multiplica-
tive. In [15], the noise intensities are assumed to be pro-
portional to the absolute value of the relative states of an
agent and its neighbors. For fixed and switching topology
cases, sufficient conditions to achieve mean square con-
sensus and strong consensus are given, respectively. Then,
intensity function [15] is extended in [16] to the vector
function.

We notice that the combination of bipartite con-
sensus and measurement noise has not been taken good
care of, and the only available ones are for first-order
MASs under undirected signed graphs [17]. However, it is
realized that various applications in the real world, such
as the multirobot system [2] and the multivehicle system
[18], are usually modeled to be of the second-order, and
therefore there is the practical needs of investigating the
effects of measurement noise on bipartite consensus for
second-order MASs.

Following the above discussions, in this work
we investigate bipartite consensus for double-integrator
MASs with measurement noise under signed digraphs.
Similar to [11–14,19], a time-varying consensus gain is
introduced in the design of the bipartite consensus pro-
tocol. In the current problem setting, the row sum of
Laplacian is nonzero and hence the Laplacian may be
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a positive definite matrix, different from standard graph
theory in conventional consensus. This thus fails con-
ventional analysis tools in [14] and [19]. On the other
hand, with measurement noise the closed-loop system is
a time-varying stochastic differential equation, thus fail-
ing the analysis tools in [6–10] which are for bipartite
consensus in the absence of measurement noise.

To overcome difficulties caused by measurement
noise and hostile interactions, state transition matrix and
algebraic graph theory are employed. The obtained con-
ditions for the proposed protocol to be a mean square
bipartite linear 𝜒-consensus protocol are not only suffi-
cient, but also necessary. We show that the signed digraph
 to be structurally balanced and having a spanning tree
are the weakest communication assumption for ensuring
a mean square bipartite linear 𝜒-consensus. Under the
protocol, the positions/velocities of all agents converge
in mean square to a random but the same value except
the signs. Moreover, the mathematical expectation of the
positions is a linear 𝜒 function of the initial positions and
velocities of the agents, while the variance and mathemat-
ical expectation of velocities are both zero. Particularly, if
 is also weight balanced, then the protocol is proved to
be a mean square bipartite average consensus protocol.

The remainder of the paper is organized as follows.
We introduce the necessary basic concepts on weighted
signed graphs, and formulate the problem of interest in
Section II. The main results are presented in Section
III. Simulation examples are provided in Section IV, and
Section V concludes the paper.
Notation. In this paper, 𝟏 is the column vector with all
ones. Re(𝜆) is the real part of 𝜆. For given random vari-
ables x and y, Cov(x, y) denotes their covariance. E(x)
is the mathematical expectation of x and D(x) is its
variance.

II. PRELIMINARIES AND PROBLEM
FORMULATION

2.1 Preliminaries on weighted signed graph

Multi-agent systems with hostile interactions are
considered. The interaction topology of agents is repre-
sented by a weighted signed digraph  = ( ,  ,) where
 = {1, · · · ,N} is the set of nodes and  ⊆  ×  is
the set of edges. (j, i) ∈  if and only if there is an infor-
mation flow from j to i. The neighbor set of agent i is
denoted by i = { j ∈  ∣ (j, i) ∈ }.  = (𝛼

ij
) ∈

RN×N is a weighted adjacency matrix. 𝛼
ij
≠ 0 if and only

if (j, i) ∈  . 𝛼
ij

< 0 means competition and 𝛼
ij

> 0
means cooperation between agents i and j, respectively.

In this paper, we always assume 𝛼
ii
= 0, 𝛼

ij
𝛼

ji
≥ 0, i, j =

1, · · · ,N.  =  − is called Laplacian of , where  =

diag

(
N∑

j=1
|𝛼1j|, · · · , N∑

j=1
|𝛼Nj|

)
. A weighted signed digraph

 = ( ,  ,) is said weight balanced if
N∑

j=1
|𝛼ij| = N∑

j=1
|𝛼ji|,

i = 1, · · · ,N. A weighted signed digraph  = ( ,  ,)
is said structurally balanced if there exist two subsets
1, 2, 1

⋃
2 =  , 1

⋂
2 = ∅, such that 𝛼ij ≥ 0,

∀i, j ∈ l, (l ∈ {1, 2}), 𝛼ij ≤ 0, ∀i ∈ l , j ∈ r, (l ≠ r, l, r ∈
{1, 2}). It is said structurally unbalanced otherwise.

Laplacian  has a close relationship with the con-
nectivity of a weighted signed digraph , as stated below.

Lemma 1 ([20]). If  = ( ,  ,) is structurally balanced,
then  has at least one zero eigenvalue and all the other
eigenvalues are in the open right half plane. Particularly,
 has exactly one zero eigenvalue if and only if  has a
spanning tree.

2.2 Problem formulation and useful lemmas

Consider the double-integrator MASs with N
agents, indexed from 1 to N. The dynamics of the ith
agent is

ẋi(t) = vi(t), v̇i(t) = ui(t), i = 1, · · · ,N, (1)

where xi(t) ∈ R, vi(t) ∈ R, ui(t) ∈ R are the position,
velocity and control input of the ith agent, respectively.

In view of the measurement noise, the ith agent is
assumed to receive its neighbors’ information zxij

(t) =
xj(t)+bxij

𝜃xij
(t), and zvij

(t) = vj(t)+bvij
𝜃vij

(t), j ∈ i, where
zxij

(t), zvij
(t) denote the measured position and velocity

of agent j by agent i, respectively. {𝜃xij
(t), 𝜃vij

(t), i, j =
1, · · · ,N} are independent standard white noise and
{bxij

> 0, bvij
> 0, i, j = 1, · · · ,N} are the noise intensity.

The so-called bipartite linear 𝜒-consensus problem
under measurement noise is to design a distributed proto-
col for the MASs in (1) such that the positions/velocities
of all agents converge to a random but the same value
except their signs, while the mathematical expectation is
a linear 𝜒 function of the initial states.

For the ith agent, we design the following protocol:

ui(t) = −vi(t) + k(t)
∑
j∈i

|𝛼ij| [(sgn(𝛼ij)zxij
(t)

−xi(t)
)
+
(

sgn(𝛼ij)zvij
(t) − vi(t)

)]
,

(2)

where the piecewise continuous function k(t) ∶
[0,+∞) → (0,+∞) is the time-varying gain.
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Remark 1. Equation (2) is the protocol in [19] if the
signed digraph  is traditional, i.e., 𝛼ij ≥ 0, i, j = 1, · · · ,N.
(2) is a distributed protocol since only the states of agent
i and its neighbors are used.

Define Xi(t) = (xi(t), vi(t))T and X (t) = (XT
1 (t)

, · · · ,XT
N (t))T ∈ R2N , respectively. Substituting the pro-

tocol in (2) to the system in (1) yields

dX (t) =[IN ⊗ Δ + k(t)⊗ Υ]X (t)dt

+ k(t)ΓdW (t),
(3)

where Δ =
(

0 1
0 −1

)
, Υ =

(
0 0
−1 −1

)
,

Γ = diag(Γ1, · · · ,ΓN) ∈ R2N×2N2
, Γi =(

−𝛼i1

(
0 0

bxi1
bvi1

)
, · · · ,−𝛼iN

(
0 0

bxiN
bviN

))
, i =

1, · · · ,N, ∫ t
0 𝜃xij

(s)ds = Wxij
(t), ∫ t

0 𝜃vij
(s)ds =

Wvij
(t), i, j = 1, · · · ,N and W (t) =

(Wx11
(t),Wv11

(t), · · · · · · ,WxNN
(t),WvNN

(t))T is a 2N2

dimensional standard Brownian motion.
The closed-loop system in (3) is a time-varying

stochastic system. The following definition is useful to
describe its asymptotic behaviour.

Definition 1.  = {ui, i = 1, · · · ,N} is said to be
a mean square bipartite linear 𝜒-consensus protocol, if
for any Xi(0) ∈ R2, i = 1, · · · ,N, there exist random
variables x∗ and v∗ such that limt→∞ E[xi(t) − 𝜑ix

∗]2 =
0, and limt→∞ E[vi(t) − 𝜑iv

∗]2 = 0, where E(x∗) =
𝜒(x1(0), v1(0), · · · , xN(0), vN(0)),D(x∗) < ∞, E(v∗) =
D(v∗) = 0, 𝜒(⋅) is a linear function and 𝜑i ∈ {±1}(i =
1, · · · ,N) is independent of the initial states.

Remark 2. Definition 1 means that regardless of the ini-
tial states, the positions/velocities of all agents converge
in mean square to a random but the same value except
their signs. Definition 1 is not equivalent to the definition
of mean square bipartite consensus protocol in [17].

Finally, the following assumptions are needed in the
analysis that follows.

(A1) = ( ,  ,) has a spanning tree.
(A2) = ( ,  ,) is structurally balanced.
(A3) ∫ ∞

0 k(s)ds = ∞ .
(A4) ∫ ∞

0 k2(s)ds < ∞ .

Remark 3. (i) In the presence of measurement noise,
from Theorem 1 of [17] we know that 𝐀𝟏 and 𝐀𝟐 are suf-
ficient conditions on communication topology to ensure
a mean square bipartite consensus for first-order integra-

tor MASs. (ii) (A3) and (A4) are common assumptions
in stochastic approximation theory. A possible option for
k(t) satisfying (A3) and (A4) has been given in [12].

For the closed-loop system in (3), the following
lemma discusses the performance issue of its state transi-
tion matrix Ψ(t, t0)(t0 ≥ 0). It is instrumental in proving
the main results in the following section.

Lemma 2. If the protocol in (2) is a mean square
bipartite linear 𝜒-consensus protocol, then there exists
𝛽 ∈ R2N such that limt→∞ Ψ(t, 0) = f 𝛽T , where f =
(𝜑1, 0, · · · , 𝜑N , 0)T ∈ R2N .

Proof. According to Definition 1, for any given Xi(0) ∈
R2, i = 1, · · · ,N, there exist x∗ and v∗ such that
lim
t→∞

E[xi(t) − 𝜑ix
∗]2 = 0, and lim

t→∞
E[vi(t) − 𝜑iv

∗]2 =
0, where 𝜑i = ±1, i = 1, · · · ,N, E(x∗) =
𝜒(x1(0), v1(0), · · · , xN(0), vN(0)) and E(v∗) = 0. Denote
𝜑 = (𝜑1, · · · , 𝜑N)T . Then limt→∞ E‖X (t) − 𝜑 ⊗

(x∗, v∗)T‖2 = 0. From (3), one obtains X (t) =
Ψ(t, 0)X (0) + ∫ t

0 k(s)Ψ(t, s)ΓdW (s). Without loss of gen-
erality, we assume that ∫ t

0 k(s)Ψ(t, s)ΓdW (s) converges to
Y∗ in mean square. Therefore,

𝜑⊗ (Ex∗, 0)T = lim
t→∞

Ψ(t, 0)X (0) + EY∗ (4)

Note that X (0) is arbitrary. Thus, for 2X (0) and
3X (0), there exist �̄�, x̄∗ and �̂�, x̂∗ such that

�̄� ⊗ (Ex̄∗, 0)T = 2 lim
t→∞

Ψ(t, 0)X (0) + EY∗,

�̂� ⊗ (Ex̂∗, 0)T = 3 lim
t→∞

Ψ(t, 0)X (0) + EY∗.
(5)

By (4) and (5), one has

𝜑⊗ (Ex∗, 0)T = �̄�⊗ 2(Ex̄∗, 0)T − �̂�⊗ (Ex̂∗, 0)T . (6)

This implies that 𝜑 = ±�̄� = ±�̂�. If not, we assume
𝜑 = ±�̄� = ±�̂� does not hold. Without loss of generality,
we take 𝜑 ≠ �̄� = �̂� as an example. In this case, using (6)
one obtains Ex∗ = 2Ex̄∗ −Ex̂∗ and Ex∗ = −2Ex̄∗ +Ex̂∗.
Hence, Ex∗ = 0. This contradicts the statement that (2)
is a mean square bipartite linear 𝜒-consensus protocol.
Similarly, other cases can be proved.

Due to (5), we assume lim
t→∞

Ψ(t, 0)X (0) =
𝜑 ⊗ (Ed∗

x , 0)
T . Since X (0) is arbitrary, we

can take ei = (0, · · · , 0, 1
⏟⏟⏟

i

, 0, · · · , 0)T (i =

1, · · · , 2N) as X (0), respectively. Then lim
t→∞

Ψ(t, 0) =(
𝜑⊗ (Ed∗

e1
, 0)T , · · · , 𝜑 ⊗ (Ed∗

e2N
, 0)T

)
=

(𝜑1, 0, · · · , 𝜑N , 0)T (Ed∗
e1
, · · · ,Ed∗

e2N
)1×2N ≜ f 𝛽T .
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III. MAIN RESULTS

Theorem 1. For the system in (1), the protocol in (2) is a
mean square bipartite linear 𝜒-consensus protocol if and
only if assumptions (A1)–(A4) hold.

Proof.
Sufficiency. Since (A1) and (A2) hold, Lemma 1 implies
that Laplacian  has exactly one zero eigenvalue and all
the other eigenvalues are in the open right half plane.
Then there exists an invertible matrix H ∈ CN×N such
that

H−1H = Λ = diag(0,Q2, · · · ,Qg), (7)

where Qi is a Jordan block corresponding to 𝜆i and
Re(𝜆i) > 0, i = 2, · · · , g. Combining this with Lemma 4 in
[19], we obtain the state transition matrix Ψ(t, t0) = (H ⊗

I2)diag
(
ΨQ0

1
(t, t0),ΨQ

𝜆2
2
(t, t0), · · · · · · ,ΨQ

𝜆g
g
(t, t0)

)
(H−1 ⊗

I2), where ΨQ0
1
(t, t0) =

(
1 1 − e−t+t0

0 e−t+t0

)
and

ΨQ𝜆r
r
(t, t0), r = 2, · · · , g follows from Lemma 4 in [19].

Since (A3) holds, lim
t→∞

ΨQ𝜆r
r
(t, t0) = 𝟎, r = 2, · · · , g. Thus

lim
t→∞

Ψ(t, t0) = (H ⊗ I2)diag(
(

1 1
0 0

)
, 𝟎, · · · , 𝟎)

×(H−1 ⊗ I2).
(8)

Using Cauchy Criterion ([21]) and retracing the
same arguments from Theorem 1 of [19], one obtains
that ∫ t

0 k(s)Ψ(t, s)ΓdW (s) converges to a random vector
X∗

2 in mean square. Therefore, X (t) = Ψ(t, 0)X (0) +
∫ t

0 k(s)Ψ(t, s)ΓdW (s) converges in mean square to a ran-
dom vector X∗ = (x∗

1, v
∗
1, · · · , x

∗
N , v

∗
N)

T . By (8), one has

E(X∗) = (H ⊗ I2)diag(
(

1 1
0 0

)
, 𝟎, · · · , 𝟎)(H−1 ⊗ I2)X (0).

Let the first column of H be hr and the first row of
H−1 be hT

l
= (l1, · · · , lN). Then hT

l
hr = 1. By (7),

one obtains H = HΛ and H−1 = ΛH−1. Thus
hT

l
 = 𝟎 and hr = 𝟎, i.e., hl and hr are the left

and right eigenvectors associated with zero eigenvalue
of , respectively. From (A2) and Lemma 1 in [6], there
exists D = diag(d1, · · · , dN)(di ∈ {±1}) such that DD
has all nonnegative elements. Hence DD𝟏 = 𝟎. Since
 has only one zero eigenvalue, the eigenspace associ-
ated with the zero eigenvalue is 1 dimensional. Without
loss of generality we may assume that hr = D𝟏 =

(d1, · · · , dN)T . Therefore, E(x∗
i ) = di

N∑
j=1

lj[xj(0) + vj(0)],

and E(v∗i ) = 0, i = 1, · · · ,N. Using the similar suf-

ficiency proof of Theorem 1 in [19], one immediately

obtains D(X∗) =
(
Ωij

)
N×N

⊗

(
1 0
0 0

)
, where Ωij =

didjΩ∗, and Ω∗ = ∫ ∞
0 k2(s)ds

N∑
i=1

N∑
j=1

𝛼2
ij l

2
j (b

2
xij
+ b2

vij
). Hence,

D(x∗
i ) = Ω∗ < ∞, D(v∗i ) = 0, Cov(x∗

i , x
∗
j ) = Ωij, and

Cov(v∗i , v
∗
j ) = 0, ∀i, j = 1, · · · ,N. Therefore, for ∀i =

1, · · · ,N, limt→∞ E[xi(t)−did1x∗
1]

2 ≤ lim
t→∞

E[xi(t)−x∗
i ]

2 +

2 lim
t→∞

[E(xi(t)−x∗
i )

2]
1
2 [E(x∗

i −did1x∗
1)

2]
1
2 +E[x∗

i −did1x∗
1]

2 =
E[x∗

i − did1x∗
1]

2 = 0. Similarly, lim
t→∞

E[vi(t) − did1v∗1]
2 = 0.

Denote 𝜑i = did1, i = 1, · · · ,N. Then by Definition 1, (2)
is a mean square bipartite linear 𝜒-consensus protocol.

Necessity. We prove the necessity in the following five
parts.

I. The necessity of (𝐀𝟑). For simplicity, we consider
an MASs of 3 agents, where  = (𝛼

ij
) ∈ R3×3

and 𝛼12 = 𝛼21 = a > 0, 𝛼13 = 𝛼31 = −a,
𝛼11 = 𝛼22 = 𝛼33 = 𝛼23 = 𝛼32 = 0. Without loss of
generality one may assume a = 1. Obviously, the
eigenvalues of  are 0, 1 and 3. Suppose 𝛿0, 𝛿1 and
𝛿3 are unit right eigenvectors associated with 0, 1 and
3, respectively. Let Θ = (𝛿0, 𝛿1, 𝛿3). Then applying the
protocol in (2), one obtains the state transition matrix
Ψ(t, 0) = (Θ ⊗ I2)diag(Ψ0,Ψ1,Ψ3)(Θ−1 ⊗ I2) of the

closed-loop system, where Ψ0 =
(

1 1 − e−t

0 e−t

)
, Ψ1 =(

e−t + n1(t) n1(t)
n3(t) − e−t − n1(t) n3(t) − n1(t)

)
, Ψ3 =(

e−t + n2(t) n2(t)
n3(t) − e−t − n2(t) n3(t) − n2(t)

)
, n1(t) =

∫ t
0 e−t+se−∫

s
0 k(𝜏)d𝜏ds, n2(t) = ∫ t

0 e−t+se−3∫ s
0 k(𝜏)d𝜏ds and

n3(t) = e−∫
t

0 k(s)ds. If ∫ ∞
0 k(s)ds = ∞ does not hold,

then rank
(
limt→∞ Ψ(t, 0)

)
= 3. Lemma 2 implies

rank
(
limt→∞ Ψ(t, 0)

)
= rank

(
f 𝛽T

)
≤ 1. We arrive at

a contradiction. Thus, ∫ ∞
0 k(s)ds = ∞, i.e., (A3) holds.

II. Prove  has exactly one zero eigenvalue. Firstly,
we prove 0 is an eigenvalue of . By contradic-
tion, we assume 0 is not an eigenvalue of . Then,
from ∫ ∞

0 k(s)ds = ∞, one immediately obtains
that lim

t→∞
Ψ(t, 0) = 𝟎. This together with (4) leads

to EY∗ = 𝜑 ⊗ (Ex∗, 0)T . Since EY∗ is indepen-
dent of X (0), one obtains Ex∗ is independent of
X (0). This contradicts the statement that Ex∗ =
𝜒(x1(0), v1(0), · · · , xN(0), vN(0)). Therefore, 0 is an
eigenvalue of .

Suppose Q0
1 is a Jordan block associated with 0.

Then its dimension is 1. If not, without loss of gen-
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erality one may assume Q0
1 is 2 dimensional Jordan

block associated with 0. A straightforward calculation
shows that lim

t→∞
ΨQ0

1
(t, 0) does not exist, where ΨQ0

1
(t, 0)

is a block of the state transition matrix Ψ(t, 0). Hence,
lim
t→∞

Ψ(t, 0) does not exist. This contradicts Lemma 2.

Other cases can be proved similarly. Therefore, the
Jordan block associated with 0 is 1 dimensional.

Secondly, we prove 0 is an eigenvalue of multi-
plicity 1. Suppose the multiplicity of 0 is l. If l >

1, then without loss of generality we may assume
l = 2. Due to the fact that the Jordan block asso-
ciated with 0 is 1 dimensional, by a slight abuse
of notation, we use (8) and get limt→∞ Ψ(t, 0) =

(H ⊗ I2)diag(
(

1 1
0 0

)
,

(
1 1
0 0

)
, 𝟎, · · · , 𝟎)(H−1 ⊗ I2).

Hence rank
(
limt→∞ Ψ(t, 0)

)
= 2. By Lemma 2,

rank
(
limt→∞ Ψ(t, 0)

)
= rank(f 𝛽T ) ≤ 1. This is a

contradiction. Thus l = 1.
Finally, we know that  has exactly one zero

eigenvalue.
III. The necessity of (𝐀𝟐). From II,  has exactly
one zero eigenvalue. Thanks to (A3), one has
(8). This together with Lemma 2 leads to (H ⊗

I2)diag(
(

1 1
0 0

)
, 𝟎, · · · , 𝟎)(H−1 ⊗ I2) = f 𝛽T . Note that

the first column of H is hr. The above equation implies

hr = (𝜑1, · · · , 𝜑N)T ⋅ k∗, where k∗ = 𝛽T (hr ⊗

(
1
0

)
).

Since hr = 𝟎, (𝜑1, · · · , 𝜑N)T = 𝟎. It follows that
for ∀j, 𝜑i

∑
j≠i

|𝛼ij| =
∑
j≠i

𝜑j𝛼ij, j = 1, · · · ,N. Recall

𝜑i = ±1, 𝜑2
i = 1, i = 1, · · · ,N. There thus holds∑

j≠i
|𝛼ij| =

∑
j≠i

𝜑i𝜑j𝛼ij. Therefore, 𝜑i𝜑j𝛼ij = |𝛼ij| ≥ 0.

Let 1 = {i|𝜑i = 1, i = 1, · · · ,N} and 2 = {i|𝜑i =
−1, i = 1, · · · ,N}. Then 1

⋃
2 =  , 1

⋂
2 = ∅

and 𝛼ij ≥ 0 for i, j ∈ q, q ∈ {1, 2}, 𝛼ij ≤ 0 for
i ∈ p, j ∈ q, p ≠ q ∈ {1, 2}. By definition,  is
structurally balanced.
IV. The necessity of (𝐀𝟏). From II, III and Lemma 1,
one knows that  has a spanning tree, i.e., (A1) holds.
V. The necessity of (𝐀𝟒). Notice that hT

l
= (l1, · · · , lN) is

the first row of H−1 and hT
l
 = 𝟎. Therefore, by (3), one

has d
((

hT
l
⊗ (1, 1)

)
X (t)

)
= k(t)

(
hT

l
⊗ (1, 1)

)
ΓdW (t).

Let 𝜉T = hT
l
⊗ (1, 1). Then 𝜉T X (t) = 𝜉T X (0) +

𝜉TΓ ∫ t
0 k(s)dW (s). From Definition 1, one derives that

state X (t) of the closed-loop system in (3) converges in
mean square to a random vector with finite variance.
Hence 𝜉TΓ ∫ t

0 k(s)dW (s) converges in mean square to
a random variable with finite variance. Therefore,
lim
t→∞

E[𝜉TΓ ∫ t
0 k(s)dW (s)]2 < ∞. If (A4) does not hold,

i.e., ∫ ∞
0 k2(s)ds = ∞, then lim

t→∞
E[𝜉TΓ ∫ t

0 k(s)dW (s)]2 =

lim
t→∞

𝜉TΓΓT𝜉 ∫ t
0 k2(s)ds = ∞. This leads to a contradic-

tion. Thus ∫ ∞
0 k2(s)ds < ∞.

Remark 4. Theorem 1 shows that in the presence of
measurement noise, (A1)–(A4) are necessary and suffi-
cient conditions to ensure a mean square bipartite lin-
ear 𝜒-consensus protocol. Particularly, (A1) and (A2)
are the weakest conditions on communication topology,
while (A3) and (A4) are to ensure the convergence of the
closed-loop system.

Remark 5. From the sufficiency proof we know that
𝜑i = did1, i = 1, · · · ,N, where di is the component of
the right eigenvector associated with eigenvalue 0 of .
Clearly, it is determined by the communication topology
and independent of the initial state X (0).

Remark 6. Under the assumption that  is structurally
balanced and has a spanning tree, bipartite consensus
problem is a traditional consensus problem. This is also
true in the presence of measurement noise ([17]). There-
fore, part of the sufficiency proof of Theorem 1 can be
similarly derived from [19]. However, for the necessity
proof, it is worth noting that conditions to be structurally
balanced and having a spanning tree exist no longer as a
premise, but as conclusions to be proved. So gauge trans-
formation is invalid and the arguments in [19] are not
applicable.

From the sufficiency proof of Theorem 1, it can be
seen that E(x∗) =

∑N
j=1 lj(xj(0) + vj(0)). It is a linear

function of initial positions and velocities. Specially, in
Theorem 1, if lj =

dj

N
, then the protocol in (2) is called a

mean square bipartite average consensus protocol.
By Theorem 1, one immediately obtains the follow-

ing result.

Corollary 1. For the system in (1), the protocol in (2) is a
mean square bipartite average consensus protocol if and
only if  is weight balanced and (A1)–(A4) hold.

Remark 7. Corollary 1 is consistent with Theorem 1 in
[19] if all 𝛼ij ≥ 0 in , i, j = 1, · · · ,N, i.e.,  is a traditional
digraph.

IV. SIMULATION EXAMPLES
Example 1. Consider an MAS in (1) with five agents. The
communication topology among them is represented by
the signed digraph 1 = ( ,  ,), where={1, 2, 3, 4, 5}.
From Fig. 1 we know that 1 is structurally balanced and
has a spanning tree.

© 2017 Chinese Automatic Control Society and John Wiley & Sons Australia, Ltd
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Considering the effects of measurement noise, we
take time-varying gain k(t) = 1

t+1
, t ≥ 0 in protocol (2).

Clearly, k(t) satisfies (A3) and (A4). Suppose that the ini-
tial states of agents are X1(0) = (−4 0)T , X2(0) = (4 1)T ,
X3(0) = (2 2)T , X4(0) = (1 − 1)T and X5(0) = (3 −
2)T , respectively. The evolution of positions/velocities of
agents can be seen in Fig. 2 and Fig. 3, respectively. A
simple calculation shows that the left eigenvector associ-
ated with eigenvalue 0 of  in 1 is hl = (l1, · · · , l5)T =
(0 0 0 0 1)T . From Theorem 1 and Definition 1 we know
that positions and velocities of agents converge in mean
square to random variables ±x∗ and ±v∗, respectively.

Moreover, E(x∗) =
5∑

j=1
lj[xj(0) + vj(0)] = 1 and E(v∗) = 0.

They are validated by Fig. 2 and Fig. 3, respectively.

Example 2. If the communication topology in Example 1
is represented by 2, then from Fig. 4 we know 2 not
only satisfies (A1)–(A2) but also is weight balanced.

Fig. 1. Signed digraph 1.

Fig. 2. Evolution of positions of agents. [Color figure can be
viewed at wileyonlinelibrary.com]

To reduce the detrimental effects of measurement
noise, a time-varing gain k(t) = t

t2+1
which satisfies

(A3) and (A4) is chosen in (2). The initial states are
X1(0) = (5 − 1)T , X2(0) = (3 1)T , X3(0) = (−1 − 2)T ,
X4(0) = (−3 0)T and X5(0) = (2 − 4)T , respectively.
From Corollary 1 we know that the positions/velocities of
agents 1, 2, 3 converge in mean square to random variable
x∗/ v∗, while agents 4 and 5’s positions/velocities con-
verge in mean square to −x∗/ −v∗. Furthermore, E(x∗) =
1
5

5∑
j=1

𝜑j[xj(0) + vj(0)] = 2, E(v∗) = 0. Fig. 5 and Fig. 6

show that bipartite average consensus is achieved in the
presence of measurement noise.

Fig. 3. Evolution of velocities of agents. [Color figure can be
viewed at wileyonlinelibrary.com]

Fig. 4. Signed digraph 2.
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Fig. 5. Position trajectories in bipartite average consensus
case. [Color figure can be viewed at
wileyonlinelibrary.com]

Fig. 6. Velocity trajectories in bipartite average consensus case.
[Color figure can be viewed at wileyonlinelibrary.com]

V. CONCLUSIONS

The effects of measurement noise on bipartite con-
sensus for the double-integrator MASs are investigated.
By using the time-varying consensus gain and sym-
bolic function, a distributed bipartite consensus pro-
tocol is designed for double-integrator MASs in the
presence of measurement noise. Necessary and sufficient
conditions for ensuring a mean square bipartite linear
𝜒-consensus protocol are given. The obtained results are
for double-integrator MASs under fixed topology, and
the switching topology case will be our future focus.
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